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The Reynolds stress associated with the adjustment of two-dimensional isotropic
eddies subject to a large-scale shear flow is examined in a series of initial-value
calculations in a periodic channel. Several stages in the temporal evolution of the
stress can be identified. Initially, there is a brief period associated with quasi-passive
straining of the eddy field in which the net Reynolds stress and the associated
eddy viscosity remain essentially zero. In spectral space this is characterized by
mutual cancellation of contributions to the Reynolds stress at high and low eddy
wavenumbers. Subsequently, eddy–eddy interactions produce a tendency to restore
isotropy at higher eddy wavenumbers, leading to an overall positive eddy viscosity
associated with the dominant contribution to the Reynolds stress at low eddy
wavenumbers. These results are consistent with theoretical predictions of positive
eddy viscosity for initially isotropic homogeneous two-dimensional turbulence. Due
to the inverse cascade, the accumulation with time of energy at the scale of the
channel produces a competing tendency to negative eddy viscosity associated with
linear shearing of the disturbances. This finite-domain effect may become dominant
if the nonlinearity of the eddy field is relatively weak.

1. Introduction
Reynolds stresses mediate the exchange of momentum and energy between large-

scale motions and turbulent eddies. An eddy viscosity may be defined based on a
linear relation between the Reynolds stress tensor and the mean rate-of-strain tensor.
In a strict sense, this definition requires the existence of a ‘spectral gap’, that is,
the scale of the disturbances must be much smaller than the scale of variation of
the background flow. In two-dimensional and quasi-geostrophic turbulence, a great
many analytical and numerical studies (e.g. Fjortoft 1953; Kraichnan 1967; Fox &
Orszag 1973), as well as geophysical and laboratory observations (Sommeria 1986),
have demonstrated an inverse energy cascade involving the systematic transfer of
eddy energy to larger scales. In a broad sense, the upscale spectral energy flux in
two-dimensional turbulence may be regarded as a negative viscosity phenomenon
(e.g. Starr 1968). However, the inverse cascade is associated with aggregation of like-
signed vortices (e.g. Tabeling 2002) and occurs without a clear separation of spatial
scales. Numerical studies of forced zonal flows in beta-plane channels calculate a
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negative horizontal eddy viscosity (McWilliams & Chow 1981). Here as well, there is
no spectral gap as the eddy scale is comparable to that of the channel. For certain
anisotropic initial conditions, nonlinear theory (Gama, Vergassola & Frisch 1994) and
numerical simulations (Benzi, Manfroi & Vergassola 1996; Chaves & Gama 2000)
have demonstrated negative eddy viscosity in the absence of an externally imposed
large-scale shear flow. On the other hand, in what might be regarded as a canonical
problem, the sign of the eddy viscosity is not well established for two-dimensional
turbulence in which a random sea of initially homogeneous isotropic eddies are
subjected to a large-scale shear or strain flow.

Following Shepherd (1987) and Holloway (1989), the matter may be considered in
terms of two distinct processes. The first is linear shearing of passive two-dimensional
eddies by the large-scale flow. The second involves the influence of active eddies
through their mutual interactions. If the root-mean-square (r.m.s.) eddy vorticity,
ζrms , is much weaker than the background shear S, (ζrms/|S| � 1), then eddy–eddy
interactions will be weak. In this quasi-linear limit, an isotropic field of vortices
is elongated and tilted by a shear flow. The dynamics are sometimes illustrated in
terms of an initially circular vortex (e.g. Salmon 1998, figure 4.10) for which an
up-gradient Reynolds momentum flux develops as the vortex is distorted by the shear
flow; hence the eddy viscosity is negative and energy is transferred to the large-scale
flow. The inference of negative viscosity based on consideration of an isolated vortex
has been assumed to extend, in the quasi-linear limit, to a collection of small-scale
vortices with zero net circulation (e.g. Eyink 2006). It has been argued that this
process is an underlying physical mechanism for the inverse cascade (Chen et al.
2006).

In contradistinction to this view, Kraichnan (1976) showed that straining of a
passive isotropic wave field produces no net change in the energy of the disturbances,
implying that the eddy viscosity associated with this process is zero. Shepherd (1985)
considered passive disturbances in shear and showed that they can either gain or lose
energy depending on their initial spectral distribution. In the case of disturbances
with no particular orientation, that is, for isotropic eddies, he found that the energy is
invariant. In a complementary result, Holloway (1989) considered eddies in large-scale
shear, allowing for low-order departure from isotropy, and found that no net stress
developed.

The second process, involving turbulent eddy–eddy interactions, disrupts the linear
shearing process and produces a tendency to isotropy on an eddy-turnaround time
scale. Drawing on the closure theory of Herring (1975), Holloway (1989) pointed out
that the tendency to restore isotropy should be more efficient at the high-wavenumber
range of the eddy spectrum. The remaining anisotropy at lower eddy wavenumbers
may be expected to produce a net stress with the sense of positive eddy viscosity. The
speculative nature of this result was emphasized.

In the present paper, the sense of the eddy viscosity is examined in direct numerical
simulations of uniformly sheared, initially isotropic two-dimensional turbulence in
which there is a large spectral gap. There have been few calculations of this
sort. The study of Toh, Ohkitani & Yamada (1991) focused largely on spectral
transfers of enstrophy and the role of coherent vortices. Although Reynolds stress
spectra were reported, the net stress and eddy viscosity were not discussed. Shepherd
(1987) presented results from low-resolution simulations of non-uniformly sheared,
beta-plane turbulence and found evidence for isotropization due to eddy–eddy
interactions. The simulations provided indications of both positive and negative eddy
viscosity.
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Theory is reviewed in the next section. The numerical model and initial conditions
are described in § 3. Results from inviscid and decaying numerical simulations are
presented in § 4. A summary is given in § 5.

2. Review of theory
2.1. Spectral theory

In order to interpret the numerical results, it is useful to review briefly the
theory of Holloway (1989). Assuming a Fourier expansion of the eddy vorticity,
ζ (x, t) =

∑
ζk exp (i k · x), the unforced, inviscid evolution of the ensemble mean

enstrophy spectrum, Zk = 〈ζkζ−k〉, in a large-scale plane Couette flow, (U, V ) = (Sy, 0),
is given by

∂Zk

∂t
− Skx

∂Zk

∂ky

= Tk. (1)

Here (kx, ky) are components of the wave vector k, Tk represents enstrophy tendencies
associated with nonlinear interactions and angle brackets denote an ensemble mean.
The spectrum becomes anisotropic due to the refraction by the background shear.
Allowing only low-order departure from isotropy, an approximate representation of
the spectrum, similar to one proposed by Herring (1975, equation (5)), is adopted,

2πk Zk = Z(k) [1 − P (k) cos(2φk) − Q(k) sin(2φk)], (2)

where Z(k)δk represents the enstrophy in a band δk centred about scalar wavenumber

k = |k| =
√

k2
x + k2

y , and φk is the angle that k makes with the kx axis. The functions,

P (k) and Q(k), represent departure from isotropy and are assumed small compared
to unity. The stress tensor may be expressed in terms of these functions as(〈

u2
〉

〈uv〉
〈uv〉

〈
v2

〉
)

=
1

2

∫
E(k)

(
2 + P (k) Q(k)

Q(k) 2 − P (k)

)
dk, (3)

where E(k) = Z(k)/2k2 is the energy spectrum. Development of a deviatoric stress
thus depends on the production of E(k)Q(k) by the shear acting on the eddy field.

A relation for E(k) is obtained by substituting (2) into (1) and integrating over
azimuthal angle φk. Equations for E(k)P (k) and E(k)Q(k) are obtained similarly, first
multiplying by either cos (2φk) or sin (2φk), respectively, before integration. The result
is a set of coupled equations for the evolution of the spectra,

∂ k2E(k)

∂t
+

S

8

∂

∂k

(
E(k) Q(k)

k

)
= T (k), (4)

∂ E(k) P (k)

∂t
− S

2
E(k)Q(k) = TP (k), (5)

∂ E(k) Q(k)

∂t
+

S

2
E(k)P (k) = TQ(k) − S

4

∂ kE(k)

∂k
. (6)

The last term appearing in (6) is associated with Reynolds stress production by the
shear. Assuming that E(k) has a band-limited spectrum, then this production term
changes sign at the peak of k E(k). Thus, for S > 0, there will be a tendency to produce
positive Reynolds stress (−〈uv〉 > 0) over the low-wavenumber portion of the eddy
spectrum, and an opposing tendency for negative stress over the high-wavenumber
range. If kE(k) vanishes at high and low wavenumbers, then the net stress produced
by the shear is zero. Although this result is apparently restricted to a low-order
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representation of anisotropy according to (2), Holloway (2010) has shown that it is
generally the case that, in the absence of nonlinear interactions, straining of initially
isotropic disturbances produces no subsequent net stress. Likewise, it can be shown
that the result of zero stress also holds for passive isotropic eddies subject to uniform
shear.

The term TQ(k) appearing on the right-hand side of (6) represents transfers
associated with eddy–eddy interactions. Based on closure theory (Herring 1975),
this term may be expressed as

TQ(k) =

∫
Q(l)K(k, l) dl − µ(k) Q(k) ≈ −D(k) Q(k). (7)

The two terms in the middle of (7) represent the spectral redistribution and decay
of the anisotropy. Herring (1975, figure 7) has shown that these two terms may be
approximated by the decay-like term on the right-hand side of (7) for which the
coefficient ∂D/∂k > 0, implying that decay of anisotropy is most efficient at large
wavenumbers. This is intuitively appealing as nonlinear scrambling by eddies may
be expected to restore isotropy most rapidly at the smallest scales. Given the form
of the production term in (6) and an initial band-limited eddy spectrum, the decay
of anisotropy is expected to be most pronounced over those scales associated with
negative eddy viscosity.

2.2. Finite-domain effects

The processes governing the production and decay of the Reynolds stress spectrum
appear as forcing terms on the right-hand side of (6). The second of these is associated
with the linear shearing of disturbances. It was noted above that this term vanishes
on integration, and thus makes no net contribution to the stress, provided that the
energy spectrum is band-limited. This condition may hold for an initial ensemble
of disturbances. However, in a finite domain it will be violated eventually as shear-
induced spectral transfers and the inverse cascade fill the spectrum out to the lowest
wavenumbers. Integrating (6) over wavenumber and making use of (3) and (7) we
obtain

d 〈uv〉
dt

+
S

4

〈
u2 − v2

〉
= −1

2

∫ kmax

k0

D(k) Q(k) dk +
S

8
k0E(k0), (8)

where the contribution SkmaxE(kmax ) at the largest resolved wavenumber, kmax , has
been assumed negligible. It is seen from (8) that accumulation of energy at the
gravest wavenumber, k0, produces a systematic tendency for a stress in the sense
of negative eddy viscosity. This tendency competes with the opposing tendency of
nonlinear interactions to suppress the high-wavenumber portion of the Reynolds
stress spectrum that is associated with negative viscosity. The resulting net stress in
a finite domain will depend on the time-dependent balance between these competing
processes.

Finite-domain effects were recognized by Shepherd (1987, § 3.2) who noted that
while in an infinite domain the energy is invariant for initially isotropic disturbances,
‘when the spatial spectrum is discrete, however, then asymptotic decay must
eventually prevail’. Under refraction of initially isotropic passive disturbances, energy
losses at higher wavenumbers are balanced by energy gains at progressively lower
wavenumbers. However, in a finite domain, the low-wavenumber bandwidth available
to gain energy will be exhausted eventually. Subsequently, linear shearing is a process
that acts in the sense of a negative viscosity on the disturbances.
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3. Numerical model
The initial-value problem of a two-dimensional field of small-scale eddies embedded

within a large-scale shear flow is considered with respect to the theory of § 2. The
dynamics are governed by the vorticity equation,

∂ζ

∂t
+ J (ψ, ζ ) = ν ∇2ζ, (9)

where ψ is a streamfunction such that the (x, y) components of velocity are given by
(u, v) = (−∂ψ/∂y, ∂ψ/∂x). The vorticity, ζ , and streamfunction fields are related via
the Poisson equation, ∇2ψ = ζ . Equation (9) is integrated numerically in a periodic
channel of dimensions L × L, with the condition of no normal flow, ψ =0, applied
along sidewall boundaries at y = ±L/2, and periodic boundary conditions in the x

direction. Both inviscid (υ = 0) and decaying experiments are considered.
The initial conditions for each model run are ζ (x, y, t = 0) = ζe(x, y) − S, where the

zero mean random eddy component, ζe, is characterized by an r.m.s. vorticity, ζrms , and
has a specified band-limited top-hat spectrum whose lower and upper wavenumber
limits are given by (k1, k2), respectively. The constant S > 0 is the shear of the
background flow, U0(y) = Sy. Each numerical experiment consists of an ensemble of
N = 30 runs with random initial eddy fields. Reducing the ensemble size from 30 to 15
members leads to only minor quantitative changes to ensemble means and standard
deviations, indicating that the results are statistically robust. In the following, 95 %
confidence intervals on estimated means are calculated using standard methods (e.g.
von Storch & Zwiers 1999 § 5.4.4) based on the t-distribution with N − 1 degrees of
freedom.

The evolution according to (9) includes straining of the eddy field by the background
shear flow, as well as nonlinear eddy–eddy interactions. To isolate the influences of
these processes on the Reynolds stress, experiments were conducted in which eddy
interactions are omitted. These cases involve the advection of passive disturbances by
the background flow according to the linearized inviscid vorticity equation,

∂ζ

∂t
+ J (ψ0, ζ ) = 0 (10)

with ψ0(y) = (S/8)(L2 − 4y2). Ensemble runs with (10) make use of initial eddy fields
that are identical to those for (9), allowing a direct comparison with nonlinear
simulations and an examination of the influence of eddy–eddy interactions on the
Reynolds stress.

The finite difference model is similar to that of Cummins & Holloway (1994),
modified for cyclic boundary conditions in the x direction. It makes use of the
energy and enstrophy conserving scheme of Arakawa (1966) to discretize the Jacobian
operator in (9) and (10). In the inviscid experiments, the vorticity equation is integrated
on the channel sidewalls using one-sided Arakawa operators (cf. Wang & Vallis
1994). A leap frog scheme is used for the time stepping with occasional application
of the Huen scheme to prevent the development of a computational mode. The
frictional term on the right-hand side of (9) is lagged one time step to maintain
stability (e.g. Holland 1978). The FISHPACK routine HWSCRT (Swarztrauber &
Sweet 1975) is used to solve the Poisson equation in the channel geometry. Except
where noted, the results discussed below are drawn from integrations on a grid of
dimensions 2048 �s × 2048 �s, with �s the uniform lateral resolution. These results
are representative of an extensive set of experiments that were conducted with varying
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resolution, grid Reynolds number, initial spectral shape and a broad range of the
nonlinearity parameter, ζrms/|S|.

In the simulations, the disturbances undergo a transient evolution from their initial
conditions that may involve an exchange of energy with the average along-channel
flow, the sense of which depends on the sign of the net Reynolds stress. Neglecting
friction, the evolution of the average flow, ū(y, t), is related to the divergence of the
Reynolds stress as ∂ ū/∂t = − ∂ u′v′/∂y, with the overbar denoting an average in the
(along-channel) x direction, and primes the deviation thereof. The mean flow kinetic
energy, EZ =L−1

∫
(ū2/2) dy, and the eddy kinetic energy, EKE =L−1

∫
1
2
(u′2 + v′2) dy,

vary inversely as

dEZ

dt
= −dEKE

dt
= L−1

∫
u′v′(∂ū/∂y) dy.

The eddy viscosity is defined as υe(y) = −u′v′(∂ū/∂y)−1. Assuming that the background
shear is approximately constant, ∂ ū/∂y ≈ S > 0, which is the case in the simulations,
then energy is transferred from the mean flow to the eddies if the net Reynolds stress is
positive, R ≡ L−1

∫
−u′v′ dy > 0. The overall eddy viscosity, M = L−1

∫
υe dy ≈ S−1R,

is positive in this circumstance and dEKE/dt ≈ S2M > 0.

4. Results
In the following, quadratic quantities such as the Reynolds stress and eddy kinetic

energy are non-dimensionalized by twice the initial eddy kinetic energy, 2EKE |t = 0.
Time is non-dimensionalized according to an advection time scale, |S|−1, as this is
the natural time scale for wave–mean flow interactions and shear-induced spectral
transfers. The eddy turnaround time, τe = ζ −1

rms , is also mentioned as this provides the
natural time scale for eddy–eddy interactions.

The ideal experiment would be one in which unbounded homogeneous isotropic
eddy fields are subject to a uniform shear flow. To approximate this situation,
ensembles of initial fields are specified for which the characteristic eddy length
scale is small compared to the dimensions of the channel domain. Accordingly, the
wavenumber spectrum of the initial eddy fields is such that (k1, k2) = (40, 60). Thus,
there is initially a large spectral gap and the turbulence is essentially homogeneous,
except in the immediate proximity of the channel sidewalls. It is recognized, however,
that given the inverse cascade the influence of the finite-domain size will increasingly
be felt as time advances, and the spectral gap between the background flow and the
disturbances will vanish eventually.

4.1. Inviscid simulations

To focus on the role of nonlinearity in the evolution of the Reynolds stress,
experiments in which the disturbances undergo an inviscid adjustment are considered
first. Due to the forward cascade of enstrophy, the inviscid evolution leads to a build-
up of variance at the grid scale and a tendency to enstrophy equipartition spectra
(Salmon 1998). The simulations are terminated well before such a state is realized.
As the accumulation of grid-scale variance is an artefact of inviscid dynamics, the
sensitivity of the results to the treatment of small-scale motions is examined in a
series of decaying experiments that include explicit viscous damping. These cases are
discussed in § 4.2.

4.1.1. Reference experiment

The reference experiment is a strongly nonlinear one in the sense that the ratio
of the r.m.s. eddy vorticity to the background shear is large, ζrms/|S| =10. The
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Figure 1. Inner portion of the eddy vorticity field from one member of the ensemble of the
reference experiment at (a) t = 0, and (b) t = 1.1. (c) Eddy vorticity field at t = 1.1 from the
linearized experiment (§ 4.1.2). (d ) Eddy vorticity from a decaying experiment (§ 4.2), also at
t = 1.1. The contour interval is ζrms , based on the r.m.s. vorticity at t = 0. Solid lines denote
positive values, dashed lines negative. The zero contour has been suppressed.

reason for this choice is to minimize the relative importance of finite-domain effects.
Comparison with a corresponding linear experiment is given in § 4.1.2, and variations
in the parameter ζrms/|S| are considered in § 4.1.3.

Figure 1(a) presents the vorticity field from one member of the ensemble of initial
eddy fields of the reference experiment. (Only the innermost portion of the grid is
shown for clarity.) Following release from the initial conditions, and after several eddy-
turnaround time units (τe = 11), the vorticity field comes to be dominated visually
by fine-scale filamentary vortex structures (figure 1b). The coherent elongation of
the vortices by the shear flow is largely obscured, as might be expected for a case
with strong eddy–eddy interactions. At subsequent stages in the flow evolution, the
vorticity becomes dominated visually by a fine grain structure associated with an
accumulation of grid-scale enstrophy.

Ensemble mean eddy kinetic energy spectra, E(k), were computed by summing
〈(k2ψ ′

k ψ ′
−k)/2〉 over shells of constant k, where ψ ′

k denotes the Fourier-transformed
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Figure 2. (a) Ensemble mean energy spectra, E(k), at different times in the reference
experiment (ζrms/|S| = 10). (b) As in (a), but from an experiment in which the background
shear is omitted (S = 0). (c) E(k) for the linear experiment of § 4.1.2. (d ) E(k) for the decaying
case of § 4.2 with ζrms/|S| = 10 at t = 0.

eddy streamfunction. During the first few advection time units, the eddy scale is small
compared to the domain size and the turbulence is essentially homogeneous, except in
the immediate proximity of the channel boundaries. While the inhomogeneity in the y

direction can lead to ‘leakage’ between spectral bands, this difficulty may be alleviated
by tapering the eddy streamfunction in the proximity of the boundaries (von Storch
& Zwiers 1999, § 12.3.8). However, as these fields vanish at the channel sidewalls,
periodic extension of the streamfunction is not associated with a jump discontinuity
(although derivatives may be discontinuous), and it was found that tapering had very
little affect on the shape of the spectra. Accordingly, this step was omitted.

Figure 2(a) presents E(k) at different times through the reference experiment.
At stages through the temporal evolution, a k−3 scaling is evident in the spectra
of figure 2(a), consistent with the development of an enstrophy inertial subrange.
As expected, the spectral gap between the shear flow and eddy field collapses as
eddy energy is transferred to the channel scale over a few advection time units.
A comparison with spectra from a similar nonlinear experiment that omits the
background shear (figure 2b) shows clearly that the presence of the shear speeds up
appreciably the transfer of energy to the largest scales. This occurs as the shear-
induced spectral transfer of energy to lower wavenumbers (Shepherd 1987, § 3) assists
the inverse cascade to close the spectral gap.

The time variation of the ensemble mean net Reynolds stress, 〈R〉, along with
95 % confidence limits on the mean, are presented for the reference experiment in
figure 3(a). At the outset of integration, 〈R〉= 0 for a brief period lasting somewhat
less than half an eddy-turnaround time unit. Subsequently, the ensemble mean
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Figure 3. (a) Time variation of the ensemble mean net Reynolds stress, 〈R〉, from the
reference experiment (thick solid line). Thin solid lines represent the 95% confidence interval
on the mean. The dashed-dotted lines are the ensemble mean and confidence interval for the
linear experiment (§ 4.1.2). (b) Ensemble mean eddy kinetic energy, 〈EKE 〉, from the reference
experiment (solid line), and from the linearized case (dashed-dotted line).

Reynolds stress increases rapidly to assume statistically significant positive values.
Starting at about t = 4, the positive Reynolds stress begins to relax to zero within
a gradually widening confidence interval as eddy energy accumulates at the largest
scales (figure 2a). The results of figure 3(a) indicate a statistically robust positive eddy
viscosity phenomenology for initially isotropic two-dimensional turbulence subject to
a large-scale shear flow.

The ensemble mean eddy kinetic energy, 〈EKE 〉, is presented in figure 3(b).
Consistent with zero initial Reynolds stress, the eddy kinetic energy remains constant
for a brief period at the start of the integration. Subsequently, 〈EKE 〉 increases to
over 50 % of its initial value. This increase is balanced by a compensating decrease
in the kinetic energy of the mean flow (not shown) such that the total energy,
〈EKE + EZ〉, is constant. (The latter is conserved to within a factor of 10−5 over the
course of the experiment.) Since 〈EZ〉	 〈EKE 〉, the increase in eddy kinetic energy
barely affects the along-channel mean flow which remains close to its initial linear
cross-channel variation throughout the experiment. Small, but statistically significant,
deviations occur within an eddy length scale of the channel sidewalls, where there is
a stress divergence due to the condition of no normal flow. The energy balance of the
ensemble is then well approximated by d〈EKE 〉/dt ≈ S〈R〉. Accordingly, 〈EKE 〉 begins
to decrease at about t =8, in association with the change in the sign of 〈R〉.

The x-averaged ensemble mean Reynolds stress, 〈−u′v′〉, shown in the Hovmüller
(y–t) diagram of figure 4, provides an additional perspective on the spatial distribution
and variability of the Reynolds stress. The diagram shows that during the first few
advection time units the x-averaged Reynolds stress is almost uniformly positive
across the channel. However, a boundary influence associated with negative Reynolds
stress is apparent and gradually encroaches into the interior of the channel. This
occurs as the scale of eddies located in the proximity of the boundary increases.
Eventually, there is a fairly complete collapse of the positive Reynolds stress regime
across the domain at about t = 7–8. This occurs as eddy energy accumulates at the
scale of the channel and effects of the finite domain are felt. By this time, the initial
spectral gap has largely closed (figure 2a).

One-dimensional Reynolds stress spectra, −uv(k), permit a more detailed view of
eddy–mean flow interactions. These spectra were compute by shell integration of
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Figure 4. Hovmüller (y–t) diagram of the ensemble mean x-averaged Reynolds stress, 〈−u′v′〉,
from the reference experiment. Shading and dotted contours depict regions of negative
Reynolds stress. The contour interval is 0.03.

−uvk = 〈kxky ψ ′
k ψ ′

−k〉. Here as well, tapering the eddy streamfunction in the proximity
of the channel boundaries has essentially no effect on the shape of the spectra and was
omitted. The ensemble mean net Reynolds stress is then given by 〈R〉 =

∫
−uv(k) dk.

Figure 5 presents −uv(k), along with 95 % confidence intervals on the ensemble
mean, at different times through the reference experiment. As the initial conditions
are isotropic, −uv(k) = 0 at t = 0. Mean flow shearing of the eddy fields leads to
opposing contributions to the Reynolds stress with positive (negative) values over
the low (high) eddy wavenumber band. This is in accordance with the form of the
anisotropy source term, (S/4)(∂ kE(k)/∂k), appearing in (6). The very early stages
of the experiment are characterized by a mutual cancellation of these contributions
(figure 5a) such that the net stress is essentially zero. At a somewhat later time
(figure 5b), −uv(k) is dominated by the positive contribution at lower wavenumbers,
consistent with the development of a net positive Reynolds stress and positive eddy
viscosity (figure 3a). This persists as the dominant contribution to −uv(k) shifts
continuously to lower wavenumbers (figure 5c). Towards the end of the simulation,
the only non-zero contributions to the mean Reynolds stress spectra are concentrated
at the lowest wavenumbers and lie within a wide confidence interval (figure 5d ).
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Figure 5. Ensemble mean Reynolds stress spectra, −uv(k) (thick lines), and 95 % confidence
interval (thin lines) at different times through the reference experiment.

4.1.2. Linear experiment

A companion experiment to the reference case was conducted in which the linearized
advection equation (9) was integrated. The initial conditions for this experiment
consist of the same eddy fields as for the reference experiment. However, as turbulent
interactions are suppressed, the linear case amounts effectively to the parameter
choice, ζrms/|S| =0. The individual runs for the linear case were integrated forward
for seven advection time units, which was sufficient to compare with the reference
case. Figure 1(c) shows the eddy vorticity field from one member of the ensemble. The
elongation and rotation of eddies by the mean flow is evident here. Energy spectra
from the linear case (figure 2c) show a progressive transfer to larger scales associated
with the shear-induced spectral transfer. However, due to the absence of the inverse
cascade, the accumulation of energy at the largest scales proceeds much more slowly
than in the nonlinear cases.

Passive straining or shearing of isotropic, homogeneous disturbances yields zero
net stress for all time (Holloway 2010). However, due to the presence of the sidewalls,
the eddy fields of the simulations are not strictly homogeneous or isotropic and, as
a result, non-zero Reynolds stresses may ensue. The time variation of the ensemble
mean stress from the linear counterpart to the reference experiment is included in
figure 3(a). This shows the slow development of weak values of 〈R〉 that are of variable
sign and small in magnitude compared with those of the nonlinear case. Consistently,
the eddy kinetic energy of the linear experiment remains nearly invariant, as seen in
figure 3(b). These contrasting results indicate that nonlinear interactions are essential
in producing the positive Reynolds stress and eddy viscosity seen in the reference
experiment.
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Figure 6. Ensemble mean Reynolds stress spectra, −uv(k), from the linear counterpart to
the reference experiment (§ 4.1.2). The 95 % confidence interval, plotted as thin lines, is barely
evident due to the small statistical variability in this case. The horizontal axis is expanded in
comparison with the spectra of figure 5.

Reynolds stress spectra from the linear case are shown in figure 6 and provide a
point of comparison with the spectra of figure 5. Near the outset of the run, the
−uv(k) spectrum (not shown) is similar to that of figure 5(a), with nearly symmetric
and mutually cancelling contributions at high and low eddy wavenumbers. In contrast
to the nonlinear reference experiment, this mutual cancellation is largely maintained
through subsequent stages of the evolution such that the resulting net stress remains
very small. Specifically, the areas below and above the horizontal axes in figure 6(a, b)
balance to within approximately 1 %. With the advance of time, the contribution to
positive Reynolds stress shifts to the left and becomes increasingly concentrated within
a small range of low wavenumbers, while the negative Reynolds stress contribution
spreads to increasingly higher wavenumbers. Comparing the spectra of figure 5(b, c)
with those of figure 6(a, b), it is evident that the eddy–eddy interactions present in the
reference experiment eliminate the contribution to the stress at higher wavenumbers.
This permits the development in the reference case of a net positive stress due to the
dominant contribution at low wavenumbers, in accordance with the theory outlined
in § 2.

The spectral distribution of the Reynolds stress in figure 6 can be understood in
terms of wave refraction. In the absence of nonlinear interactions and dissipation, the
enstrophy spectrum Zk is conserved as the wave vector k is refracted by the shear flow,
U0(y) = Sy, according to dk/dt = (0, −Skx). The time variation of the wavenumber
components is then (kx, ky) = (k0

x, k
0
y − Sk0

xt), where (k0
x, k

0
y) are initial values. The evol-

ution is illustrated schematically in figure 7(a) for an isotropic initial distribution along
|k| = (k1 + k2)/2 = 50. Waves found at a given time in the upper quadrant (kx · ky > 0)
are oriented such that 〈−u′v′〉> 0 and extract momentum and energy from the mean
flow as they are refracted. Conversely, waves whose wavenumber vector lies in the
lower quadrant (kx · ky < 0), for which 〈−u′v′〉< 0, give up energy to the mean flow.
For isotropic initial conditions, these opposing tendencies exactly balance, resulting in
zero net stress. As time progresses, wavenumber vectors lying in the upper quadrant
become confined to increasingly smaller magnitudes, while the opposite occurs in the
lower quadrant. It is this process that accounts for the progressive concentration,
evident in figure 6(a, b), of positive Reynolds stress at low wavenumbers, while the
negative Reynolds stress spreads to increasingly large wavenumbers.
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Figure 7. (a) Evolution of two-dimensional enstrophy spectra under shear flow refraction.
Time is scaled by the shear. At t =0, enstrophy variance is uniformly distributed along a circle
in the (kx, ky) plane. (b) Ensemble mean two-dimensional Reynolds stress spectrum from the
linear experiment (§ 4.1.2) at t = 1.8. Negative contours are dashed and shaded. (c) As in (b),
but for a case with moderate nonlinearity, ζrms/|S| = 5 at t = 1.8. Identical contours are drawn
in (b) and (c).

Taking into account the finite spectral bandwidth of the initial disturbances,
ensemble mean two-dimensional Reynolds stress spectra, −uvk, from the linear
experiment (e.g. figure 7b) are consistent with simple wave refraction. With the
inclusion of nonlinearity (figure 7c) the shear-induced spectral transfer is disrupted
by the process of isotropization, that is by the redistribution of disturbance enstrophy
and energy along contours of constant |k|. This is especially effective at large |ky |,
thus allowing the positive stress contribution at smaller wavenumbers to emerge
dominant. Also clearly evident in figure 7(c) is the nonlinear transfer across contours
of |k| leading, in particular, to excitation of the gravest wavenumbers.

Under wave refraction, the net cancellation of positive and negative contributions
to the Reynolds stress is maintained as time advances. However, in a finite domain,
for which the spectrum is discrete, a state will be reached eventually such that
the bandwidth in the upper quadrant is exhausted and it is no longer possible for
waves at low wavenumbers to gain energy and balance the losses occurring at high
wavenumbers. Subsequently, the contribution at large wavenumbers dominates and
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the process of linear shearing acts in the sense of a net negative eddy viscosity on the
disturbances, as suggested in § 2.2 and by Shepherd (1987).

4.1.3. Variation of ζrms/|S|
A number of additional experiments were run with the nonlinear inviscid model

in which the parameter, ζrms/|S| is varied. Figure 8 presents time series of the
ensemble mean Reynolds stress, 〈R〉 with 95 % confidence limits from cases with
ζrms/|S| =2, 5, 20. These may be compared with the results given in figure 3(a) for
the reference case (ζrms/|S| =10). Each of these nonlinear experiments shows the
development of positive Reynolds stress lasting over the first few advection time
units. In the case of relatively weak nonlinearity (ζrms/|S| =2), this is followed by
a statistically robust period of net negative Reynolds stress. Development of this
negative viscosity regime is suppressed as the nonlinearity is increased (ζrms/|S| > 5)
and, for larger values of the parameter, the positive viscosity regime persists until
nearly the end of simulations, at which point the spectral gap collapses.

These results may be interpreted in terms of the competition between finite-domain
effects tending to produce negative eddy viscosity, as mentioned above, and the
isotropizing tendency of eddy interactions. In every case there is an accumulation
after some time of energy at the largest scales, due to the inverse cascade and
shear-induced spectral transfers, and this produces a tendency for negative eddy
viscosity. With ζrms/|S| =2 the opposing tendency associated with isotropization of
higher wavenumbers is weak in comparison with the more nonlinear experiments, as is
evident from inspection of Reynolds stress spectra (not shown). Consequently, there is
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a period of negative eddy viscosity that follows the initial period of positive viscosity.
Towards the end of the simulations, as the spectral gap is closed, the Reynolds stress
in all the cases becomes variable and of indefinite sign.

Nonlinear interactions are seen to play an interesting double role with regard to the
Reynolds stress in these simulations. On one hand, nonlinearity leads to isotropization
of the smaller eddy scales, and so is essential for development of the positive viscosity
regime. However, nonlinearity also produces the inverse cascade that leads to an
accumulation of energy at the lowest wavenumbers, thus promoting development of
a competing tendency to negative eddy viscosity through linear shearing. This may
lead to an overall negative eddy viscosity if the tendency to restore isotropy at the
higher eddy wavenumbers is sufficiently weak.

4.2. Decaying simulations

The sensitivity of the results presented above to the inclusion of explicit Laplacian
friction was examined in a series of decaying simulations. All of the nonlinear
inviscid simulations of § 4.1 were repeated with the viscosity, υ , chosen such that the
grid Reynolds number, ReG ∼ 4–9, is sufficiently small to prevent the development
of enstrophy equipartition (Bennett & Haidvogel 1983), but large enough to leave
the energetic scales of motion largely undamped. Here ReG =

√
2E|t =0/kGυ with

kG =
√

2π/�s. Thus, in contrast to the inviscid calculations, there is no accumulation
of grid-scale variance, and energy spectra roll off steeply at high wavenumbers. In
this regard, the decaying experiments amount to an examination of the sensitivity of
the inviscid results to the treatment of small-scale motions.

Results are presented from a case that makes use of the same ensemble of initial
eddy vorticity fields as in the reference case (ζrms/|S| =10 at t = 0). The boundary
condition, ζ = 0, is imposed along the channel sidewalls so that there is zero tangential
stress at the boundaries. An example of a vorticity field from one member of the
ensemble for this experiment at t = 1.1 is presented in figure 1(d ). This shows eddy
structures that are similar to the inviscid case (figure 1b), but with much reduced
fine-scale variation. Eddy kinetic energy spectra (figure 2d ) undergo an evolution
similar to that of the reference case, except for the high wavenumber tail.

Channel-averaged statistics from the decaying simulation are presented in figure 9.
Due to the explicit viscous damping, the total kinetic energy of the ensemble decreases
slowly (figure 9b), while the enstrophy undergoes a much more rapid and complete
decay (figure 9c). The time variation of the ensemble mean Reynolds stress (figure 9a)
resembles that of the reference case (figure 3a) with development of robust positive
Reynolds stress, and an overall positive eddy viscosity. The eddy kinetic energy
(figure 9b) decreases initially due to the Laplacian friction, but increases subsequently
as energy is extracted from the zonal mean flow via the Reynolds stresses. This occurs
while the overall energy decays monotonically. Towards the end of the simulation, as
the dominant eddy scale approaches that of the channel, the mean Reynolds stress
changes sign and the eddy energy also decreases.

Results of this decaying simulation are thus essentially unchanged from the
inviscid reference experiment with respect to the net Reynolds stress and eddy
viscosity. Additional decaying simulations were run with initial conditions for which
ζrms/|S| =(2, 5, 20) at t = 0. The time variation of the net Reynolds stress in these
simulations (figure available as supplementary material at journals.cambridge.org/flm)
is similar to the corresponding inviscid cases presented in figure 8. Overall, the
decaying simulations indicate that the Reynolds stress is insensitive to the frictional
suppression of poorly resolved, grid-scale motions. This is understandable as the
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energy-containing well-resolved scales of motion are effective at restoring isotropy at
higher eddy wavenumbers.

In contrast to the inviscid evolution, inclusion of explicit friction is associated
with development of markedly non-Gaussian vorticity distributions. In particular,
the excess kurtosis increases monotonically from its initial Gaussian value of zero
(figure 9d ) as the vorticity becomes increasingly concentrated into a collection of
discrete vortices (McWilliams 1984). Figures 9(a) and 9(d ) indicate that the positive
eddy viscosity regime persists until the spectral gap collapses, even as the vorticity
kurtosis increases.

While the formation of coherent vortices is well known, a less familiar property of
sheared decaying turbulence is development of skewness in the vorticity distribution
(figure 9d ). This is associated with the destruction of coherent vortices that are of
opposite sign to the vorticity of the background shear. These vortices are elongated and
homogenized by the shear flow (cf. Marcus 1990; Toh et al. 1991), such that ultimately
the only surviving coherent vortices have the sign of the background vorticity. These
coherent vortices move within a sea of weak oppositely signed vorticity and tend to
assume an elliptical shape with semimajor axes aligned with the background flow,
consistent with studies on the stability of two-dimensional vortices in shear (Nycander
1995). Such a state is achieved following an extended integration. An example, drawn
from a decaying run at t = 54, is presented in figure 10. As the majority of the
coherent vortices are negative, the skewness of this field is −3.7, while the kurtosis is
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Figure 10. Eddy vorticity field at t =54 from a decaying run on a 1024 × 1024 grid. The
contour interval is 0.1 ζrms based on the r.m.s. vorticity at t = 0. Negative contours are dotted,
and the zero contour has been suppressed.

40.1. The time scale for such a large skewness to emerge is long in comparison to the
time required to close the spectral gap.

5. Summary
Direct numerical simulations have been conducted to examine the sign of the eddy

viscosity for homogeneous isotropic eddies in the presence of a large-scale shear flow.
The experiments consist of ensembles of initial-value-problems in which small-scale
isotropic disturbances are superposed on a plane Couette flow in a periodic channel.
The simulations show the emergence of a robust positive viscosity phenomenology in
both inviscid and decaying turbulence. The positive viscosity regime develops within
the first few eddy-turnaround time units following release of the initial conditions,
while effects associated with the finite scale of the channel domain are unimportant.
Based on these results, the main conclusion of this study is that, in the presence of
a spectral gap, the eddy viscosity of initially isotropic two-dimensional turbulence is
positive.

Reynolds stress spectra were examined to elucidate the process by which this occurs.
These spectra show that linear shearing produces counter-balancing tendencies for
positive and negative eddy viscosity at low and high eddy wavenumbers, respectively.
This process alone produces zero net stress for an isotropic homogeneous field of
eddies. The inclusion of nonlinear eddy interactions produces a tendency to restore
isotropy that is most efficient at higher eddy wavenumbers. This partially suppresses
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the negative eddy viscosity contribution from linear shearing, leading to an overall
positive eddy viscosity.

The positive eddy viscosity regime is maintained as the scale of the disturbances
increases due to the combined effects of the inverse cascade and shear-induced spectral
transfers. Eventually though, effects of the finite-domain size become manifest and
the process of linear shearing produces a tendency for negative eddy viscosity. The
resulting stress then depends on the time-dependent balance between the competing
processes of linear shearing and nonlinear isotropization.

Supplementary figure available at journals.cambridge.org/flm.
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